Spp382p interacts with multiple yeast splicing factors, including possible regulators of Prp43 DExD/H-Box protein function.

نویسندگان

  • Shatakshi Pandit
  • Sudakshina Paul
  • Li Zhang
  • Min Chen
  • Nicole Durbin
  • Susan M W Harrison
  • Brian C Rymond
چکیده

Prp43p catalyzes essential steps in pre-mRNA splicing and rRNA biogenesis. In splicing, Spp382p stimulates the Prp43p helicase to dissociate the postcatalytic spliceosome and, in some way, to maintain the integrity of the spliceosome assembly. Here we present a dosage interference assay to identify Spp382p-interacting factors by screening for genes that when overexpressed specifically inhibit the growth of a conditional lethal prp38-1 spliceosome assembly mutant in the spp382-1 suppressor background. Identified, among others, are genes encoding the established splicing factors Prp8p, Prp9p, Prp11p, Prp39p, and Yhc1p and two poorly characterized proteins with possible links to splicing, Sqs1p and Cwc23p. Sqs1p copurifies with Prp43p and is shown to bind Prp43p and Spp382p in the two-hybrid assay. Overexpression of Sqs1p blocks pre-mRNA splicing and inhibits Prp43p-dependent steps in rRNA processing. Increased Prp43p levels buffer Sqs1p cytotoxicity, providing strong evidence that the Prp43p DExD/H-box protein is a target of Sqs1p. Cwc23p is the only known yeast splicing factor with a DnaJ motif characteristic of Hsp40-like chaperones. We show that similar to SPP382, CWC23 activity is critical for efficient pre-mRNA splicing and intron metabolism yet, surprisingly, this activity does not require the canonical DnaJ/Hsp40 motif. These and related data establish the value of this dosage interference assay for finding genes that alter cellular splicing and define Sqs1p and Cwc23p as prospective modulators of Spp382p-stimuated Prp43p function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of a spliceosome turnover pathway suppresses splicing defects.

Defects in assembly are suggested to signal the dissociation of faulty splicing complexes. A yeast genetic screen was performed to identify components of the putative discard pathway. Weak mutant alleles of SPP382 (also called NTR1) were found to suppress defects in two proteins required for spliceosome activation, Prp38p and Prp8p. Spp382p is shown necessary for cellular splicing, with premRNA...

متن کامل

Limited portability of G-patch domains in regulators of the Prp43 RNA helicase required for pre-mRNA splicing and ribosomal RNA maturation in Saccharomyces cerevisiae.

The Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise diss...

متن کامل

Interaction between a G-patch protein and a spliceosomal DEXD/H-box ATPase that is critical for splicing.

Prp2 is an RNA-dependent ATPase that activates the spliceosome before the first transesterification reaction of pre-mRNA splicing. Prp2 has extensive homology throughout the helicase domain characteristic of DEXD/H-box helicases and a conserved carboxyl-terminal domain also found in the spliceosomal helicases Prp16, Prp22, and Prp43. Despite the extensive homology shared by these helicases, eac...

متن کامل

Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry

Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis an...

متن کامل

Function of Plant DExD/H-Box RNA Helicases Associated with Ribosomal RNA Biogenesis

Ribosome biogenesis is a highly complex process that requires several cofactors, including DExD/H-box RNA helicases (RHs). RHs are a family of ATPases that rearrange the secondary structures of RNA and thus remodel ribonucleoprotein complexes. DExD/H-box RHs are found in most organisms and play critical roles in a variety of RNA-involved cellular events. In human and yeast cells, many DExD/H bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 183 1  شماره 

صفحات  -

تاریخ انتشار 2009